Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: The standard preservation solution used during organ procurement and preservation of most organs is the University of Wisconsin (UW) solution. Despite its superiority over other cold storage solutions, the inclusion of hydroxyethyl starch (HES) as one of the components of the UW solution has been both advocated and denied. This study determined whether HES had any effect on red blood cell (RBC) aggregability and correlated aggregation parameters with HES molecular weight. METHODS: Human RBC aggregability and deformability were investigated in vitro, at 4 degrees C, with a laser-assisted optical rotation cell analyzer. The study of RBC aggregation in a binary HES-HES system gave an indication about the nature of HES-RBCs interactions. Bright field microscopy and atomic force microscopy were used to morphologically characterize the aggregates size and form. RESULTS: High molecular weight HES and UW solution had a potent hyperaggregating effect; low molecular weight HES had a hypoaggregating effect on RBC. RBC aggregates were of large size and their resistance to dissociation by flow-induced shear stress was high. CONCLUSION: The authors' in vitro experiments conclusively showed that the physiologic function of RBCs to form aggregates is significantly affected in the presence of HES. The use of high molecular weight HES in UW solution accounts for extended and accelerated aggregation of erythrocytes that may result in stasis of blood and incomplete washout of donor organs before transplantation.

Original publication

DOI

10.1097/01.TP.0000068044.84652.9F

Type

Journal article

Journal

Transplantation

Publication Date

15/07/2003

Volume

76

Pages

37 - 43

Keywords

Adenosine, Allopurinol, Dose-Response Relationship, Drug, Erythrocyte Aggregation, Erythrocyte Deformability, Erythrocytes, Glutathione, Humans, Hydroxyethyl Starch Derivatives, In Vitro Techniques, Insulin, Organ Preservation Solutions, Raffinose